
Graphs

Definition. A graph G is a finite set of vertices V (G) and a finite set E(G) of unordered pairs
(x, y) of vertices x, y ∈ V (G) called edges.
A graph may have loops (x, x) andmultiple edges when a pair (x, y) appears in E(G) several times.
Pictorially we represent the vertices by points and edges by lines connecting the corresponding
points. Topologically a graph is a 1-dimensional cell complex with V (G) as the set of 0-cells and
E(G) as the set of 1-cells. Here are two pictures representing the same graph.
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V (G) = {a, b, c, d}

E(G) = {(a, a), (a, b), (a, c), (a, d),
(b, c), (b, c), (b, d), (c, d), (d, d)}

Chromatic polynomial χG(q).

A coloring of G with q colors is a map κ : V (G) → {1, . . . , q}. A coloring κ is proper if for any
edge e: κ(v1) #= κ(v2), where v1 and v2 are the endpoints of e.

Definition 1. χG(q) := # of proper colorings of G in q colors.

Properties (Definition 2).
χG = χG−e − χG/e ;
χG1"G2 = χG1 · χG2 , for a disjoint union G1 %G2 ;
χ• = q .

Stanley’s theorem. For a graph G with n vertices,
(−1)nχG(−1) = # of acyclic orientations of G.

Tutte polynomial TG(x, y).

Definition 1.

TG = TG−e + TG/e if e is neither a bridge nor a loop ;
TG = xTG/e if e is a bridge ;
TG = yTG−e if e is a loop ;
TG1"G2 = TG1·G2 = TG1 · TG2 for a disjoint union G1 %G2

and a one-point join G1 ·G2 ;
T• = 1 .

Properties.

TG(1, 1) is the number of spanning trees of G ;
TG(2, 1) is the number of spanning forests of G ;
TG(1, 2) is the number of spanning connected subgraphs of G ;
TG(2, 2) = 2|E(G)| is the number of spanning subgraphs of G ;
χG(q) = qk(G)(−1)r(G)TG(1− q, 0) ;

Definition 2.

Let • F be a graph;
• v(F ) be the number of its vertices;
• e(F ) be the number of its edges;
• k(F ) be the number of connected components of F ;
• r(F ) := v(F )− k(F ) be the rank of F ;
• n(F ) := e(F )− r(F ) be the nullity of F ;

 



TG(x, y) :=
∑

F⊆E(G)

(x− 1)r(G)−r(F )(y − 1)n(F )

Dichromatic polynomial ZG(q, v) (Definition 3).

Let Col(G) denote the set of colorings of G with q colors.

ZG(q, v) :=
∑

κ∈Col(G)

(1 + v)# edges colored not properly by κ

Properties .
ZG = ZG−e + vZG/e ;
ZG1"G2 = ZG1 · ZG2 , for a disjoint union G1 %G2 ;
Z• = q ;

ZG(q, v) =
∑

F⊆E(G)

qk(F )ve(F ) ;

χG(q) = ZG(q,−1) ;

ZG(q, v) = qk(G)vr(G)TG(1 + qv−1, 1 + v) ;
TG(x, y) = (x− 1)−k(G)(y − 1)−v(G)ZG((x− 1)(y − 1), y − 1) .

Potts model in statistical mechanics (Definition 4).

Potts model (C.Domb 1952); q = 2 the Ising model (W.Lenz, 1920)

Let G be a graph.
Particles are located at vertices of G. Each particle has a spin, which

takes q different values . A state, σ ∈ S, is an assignment of spins to all
vertices of G. Neighboring particles interact with each other only is their
spins are the same.
The energy of the interaction along an edge e is −Je (coupling constant). The model is called
ferromagnetic if Je > 0 and antiferromagnetic if Je < 0.

Energy of a state σ (Hamiltonian),

H(σ) = −
∑

(a,b)=e∈E(G)

Je δ(σ(a),σ(b)).

Boltzmann weight of σ:

e−βH(σ) =
∏

(a,b)=e∈E(G)

eJeβδ(σ(a),σ(b)) =
∏

(a,b)=e∈E(G)

(
1 + (eJeβ − 1)δ(σ(a),σ(b))

)
,

where the inverse temperature β = 1
κ T , T is the temperature, κ = 1.38× 10−23 joules/Kelvin is

the Boltzmann constant.
The Potts partition function (for xe := eJeβ − 1)

ZG(q, xe) :=
∑

σ∈S

e−βH(σ) =
∑

σ∈S

∏

e∈E(G)

(1 + xeδ(σ(a),σ(b)))

Properties of the Potts model Probability of a state σ: P (σ) := e−βH(σ)/ZG .



Expected value of a function f(σ):

〈f〉 :=
∑

σ

f(σ)P (σ) =
∑

σ

f(σ)e−βH(σ)/ZG .

Expected energy: 〈H〉 =
∑

σ

H(σ)e−βH(σ)/ZG = −
d

dβ
lnZG .

Fortuin—Kasteleyn’1972: ZG(q, xe) =
∑

F⊆E(G)

qk(F )
∏

e∈F

xe ,

where k(F ) is the number of connected components of the spanning subgraph F .
ZG = ZG\e + xeZG/e .

Stanley’s chromatic symmetric function. [St1]

XG(x1, x2, . . . ) :=
∑

κ:V (G)→N

proper

∏

v∈V (G)

xκ(v)

Example. X = x̂1x1 + x1x2 + x1x3 + . . .
x2x1 + x̂2x2 + x2x3 + . . .
x3x1 + x3x2 + x̂3x3 + . . .
...

...
. . .

= p21 − p2, where

pm :=
∞∑

i=1

xm
i is the power function basis for the space of symmetric functions.

Symmetric Stanley’s acyclicity theorem deals with the expression of XG in terms of another
basis, the basis of elementary symmetric functions.

e0 := 1;
e1 := x1 + x2 + · · ·+ xn + · · · = p1;
e2 := (x1x2 + x1x3 + · · ·+ x1xn + . . . ) + (x2x3 + · · ·+ x2xn + . . . ) + · · ·+ (xn−1xn + . . . ) + . . . ;
e3 := x1x2x3 + . . . · · ·+ xn−2xn−1xn + . . . ;

...
In general, ek :=

∑

1≤j1<j2<···<jk

xj1 . . . xjk .

In particular, p2 = e21 − 2e2, X = e21 − (e21 − 2e2) = 2e2, and XKk
= k!ek.

Theorem. [St1, Theorem 3.3] Let XG =
∑

cλ1,λ2,...,λs
eλ1eλ2 . . . eλs

be the expression of XG

in terms of elementary symmetric functions. (Note that λ1 + λ2 + · · ·+ λs = # of vertices of G.)
Then for every s,

∑
cλ1,λ2,...,λs

= # of acyclic orientations of G with exactly s sinks.

For example, the graph G = has 2 acyclic orientations with exactly one sink and
, because X = 2e2.

Chromatic polynomial of signed graphs.

There are two chromatic polynomials of signed graphs [Za].
A q-coloring of a signed G is a map κ : V (G) → {−q,−q + 1, . . . ,−1, 0, 1, . . . , q − 1, q}. A

q-coloring κ is proper if for any edge e with the sign εe: κ(v1) #= εκ(v2), where v1 and v2 are the
endpoints of e.



The signed chromatic polynomial χ '=0
G (2q) is a specialization of YG obtained by substitution

xi = 1 for |i| ≤ q and xi = 0 for |i| ≥ q. This is the same substitution as pa,b = λ = 2q.
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Definition.
χG(2q + 1) := # of proper q-colorings of G.
χ '=0
G (2q) := # of proper q-colorings of G which take nonzero values.

Properties.

• χG(λ) is a polynomial function of λ = 2q + 1 > 0 ;
• χ'=0

G (λ) is a polynomial function of λ = 2q > 0 ;
• χG(λ) = χG−e(λ)− χG/e(λ) ;

• χ '=0
G (λ) = χ '=0

G−e(λ)− χ '=0
G/e(λ) ;

• χG1"G2 = χG1 · χG2 and χ '=0
G1"G2

= χ '=0
G1

· χ '=0
G2

for a disjoint union G1 %G2 ;
• χ∅ = 1 .

Example. χ '=0

−
− −

(2q) = 2q(2q − 1).

There are two tricky issues in Zaslavky’s acyclicity theorem. The first one is the notion of a
cycle. A subset S of edges of a sign graphs is called balanced if for every circuit in S the product
of the signs of edges of the circuit is equal to 1. A cycle of a signed graph G is a subgraph of one
the following 3 types: 1) a balanced circuit, 2) a subdivision of a tight handcuff with both

circuits to be unbalanced, and 3) a subdivision of a loose handcuff with both circuits

to be unbalanced. The second issue is a notion of orientation. An orientation of an edge is a pair
of arrows on its half-edges which are coherent for positive edges and not coherent for negative
edges. An orientation of a sign graph is acyclic if every cycle contains either a source or a sink.
An orientation of a sign graph is compatible with a coloring c if for every positive edge the color
of it arrow-head is greater or equal to the color of it arrow-tail and for every negative edge the
sum of colors of its ends is not negative (resp. not positive) for the arrows pointed towards the
ends (resp. away from the end).

Theorem. [Za, Theorem 3.5] Let q ∈ N and G be a signed graph with n vertices. The
the number of compatible pairs of acyclic orientations of G and colorings V (G) → {−q,−q +
1, . . . ,−1, 1, . . . , q − 1, q} is equal to (−1)nχ '=0

G (−2q).

Example. For q = 1 and the graph above we have χ '=0

−
− −

(−2) = 6. Here are 6 compatible

pairs of acyclic orientations and colorings V (G) → {−1, 1} (we mark the source-vertex red and
the sink-vertex blue).

1 1 −1 −1 1 −1 −1 1 1 −1 −1 1

Note that the first two colorings are proper and the last four are improper.

B-symmetric chromatic function of signed graphs. [Ra, Ch]

YG(. . . , x−2, x−1, x1, x2, . . . ...) :=
∑

κ:V (G)→Z\{0}
proper

∏

v∈V (G)

xκ(v)

Example. Y
−

− −

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x−2(. . . x−2 + x−1 + x1 + x̂2 + . . . )
x−1(. . . x−2 + x−1 + x̂1 + x2 + . . . )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= p21,0 − p1,1, where

pa,b :=
∑

i∈Z\{0}

xa
i x

b
−i are the signed power functions.


